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Abstract—The general dynamic slope-deflection equations for circular curved members of constant section have
been derived for the determination of natural frequencies of frame structures. An example of a two-span curved
frame is given to illustrate the application of the derived equations and to show the effect of the central angle of
the arc upon the natural frequencies of the frame.

1. INTRODUCTION

VIBRATIONS of curved beams have been studied by many investigators. Den Hartog [1]
applied the Rayleigh-Ritz method to find the lowest natural frequency of circular arcs
vibrating in the plane of initial curvature of the arc. Volterra and Morell [2] extended
Den Hartog’s work to include arcs having center lines in the form of cycloids, catenaries
or parabolas. The first detailed paper concerning the vibration of ring segments was pub-
lished by Waltking [3] who obtained the exact solution for the free vibration of a pinned—
pinned circular arc. Morley [4] solved the problem of flexural vibrations of a cut thin ring
exactly and presented the first ten modes of symmetrical and anti-symmetrical vibrations.
The inextensional vibrations of an incomplete circular ring with additional terms to repre-
sent damping effects were studied by Archer [5]. Using the Rayleigh—Ritz technique in con-
junction with Lagrangian multipliers, Nelson [6] made an analytical study of the in-plane
vibration of a simply supported circular ring segment. He obtained frequency equations
in the form of infinite series for inextensional and extensional in both symmetrical and anti-
symmetrical mode shapes.

All these works mentioned above are simple curved beams with various boundary
conditions. No investigations, however, have been made for curved frames. The purpose
of this paper is, therefore, to present a general method for analyzing circular curved frames,
single or continuous. Similar to those in the statical case [7], the general dynamic slope-
deflection equations for circular curved members in terms of rotation, vertical and hori-
zontal displacements, have been derived. The use of the derived equations is then illustrated
by the determination of natural frequencies of a circular curved frame.
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2. BASIC DIFFERENTIAL EQUATION AND ITS SOLUTION

Consider the in-plane, small vibration of a circular curved element as shown in Fig. 1.
The equations of motions in radial and tangential directions and the moment equation are

o0 2u
ON 0*w
A @
oM
—%+Qr = 3

FiG. 1. Element of member subjected to forces and moments.

where Q is the shear force, N the normal force, M the bending moment, m the mass per
unit length of member, r the radius of circular arc, 6 the angular coordinate, u the inward
radial displacement, w the tangential displacement in the sense of increasing € and ¢ the
time. For inextensional vibration, the displacements must satisfy the condition

ow
u=—_. 4

The relation between the moment and the change in curvature [8] takes the form of
EI (5214 )

= —|zgtu (5)

where E is the modulus of elasticity, I the moment of inertia of cross section and M, r, v and
0 as defined previously.
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From equations (1) and (3)}H5) we obtain

El{o*w 0*w

¢= _F(W+W) ©
&*w EI[d°w 3w

N= ’"’m*rz(m*m)- )

Substituting equations (6) and (7) in equation (2) yields a sixth-order differential equation

in w as follows:
EI{0%w _0*w 3*w Pw tw
7\ a0 T 250* Taer| = ™\ a2 " ae?) ®)

Assuming that the curved member is excited harmonically with a frequency p and letting

w(0, 1) = W(B).e'" 9)

where W(6) is the tangential modal function and i = \/(— 1), substituting equation (9) in
(8) and omitting the common term &'#, the following equation is obtained:

WYL 2WY L (1= )W+ AW = 0 (10)
where
4.2
a=re (11)
El

and the primes for W represent differentiation with respect to 6.
Equation (10) is a linear differential equation with constant coefficients so the standard
form of solution for W(6) is

6
we) = Y a,em’ (12)

where y, are the roots of the auxiliary equation. The roots are of three types depending
upon the value of 4.

Casel: 0 < A< 0113407
The roots are of the form

Y12 = T04i, Via = L0, Vs.6 = T 03i.

Case2: 0113407 < A < 17-6366
The six roots are

Yi,2 = Eo4i, V3,4 = T(v+pi), Vs,6 = T(v—pi).

Case3: 176366 < A < o©
The roots in this case are

V1,2 = 104, V34 = to0,, Vs,6 = o3,
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The modal functions for the three cases can be written as

W) = D(O)X (13)
where D(6), a row matrix, is given in the Appendix for the three cases and
a,
a
as
as

as

de

3. GENERAL DYNAMIC SLOPE-DEFLECTION EQUATIONS FOR
CIRCULAR CURVED MEMBER OF CONSTANT SECTION

Figure 2 shows a circular curved member of constant cross section subjected to har-
monic displacements, linear and rotational, at the two ends 4 and B.

Consider first the rotation at A with B being fixed. The boundary conditions due to
8, acting only are

W) =0 W) = 0
U@©) =0 Ua) =0 (14)
U'(0)+ W(0) = rb, U'(e)+ W(a) = 0.

F1G. 2. Positive displacements, forces and moments with common factor ¢'”* omitted.
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The substitution of equation (13) into equations (14) will yield the solution of the unknown
coeflicients in the following matrix form:

X =r0,A"'B (15)
where A~ ! is the inverse of matrix A which is a coefficient matrix given in the Appendix and
0
0
1
B=
0
0
0

Substituting equation (15) in (13) yields
W0 =r.0,.DO).A"'.B. (16)
Using equations (4), (5), (14) and (16) the moments at 4 and B can be obtained as follows:

EI
Mabl = fclaea (17)

EI
Mywy = —=Cuf (18)

where

Cyp= —2 sin(;) .D"(0).A"'.B (19)
C,p = 2sin %) D"(a).A"!.B (20)
L= 2rsin %) @1)

Consider next a vertical displacement Av, at A while B is still fixed. The boundary
conditions are

U')+Wwo0)=0 W) =0
U(0).cos B+ W(0).sin B =0 U =0 (22)
U(0).sin §— W(0).cos = Ao, U'la)+ W) = 0.

Using the relations of equations (22), equation (13) gives the following tangential dis-
placement

W,y(0) = Av,.D(6).V~'.B (23)

where V is a coefficient matrix which is shown in the Appendix, and D(6) and B as defined
previously.
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The moments at both ends can be obtained by using equations (4), (5), (22) and (23). The
results are

M, = gcu . Av, (24)
M,,, = —gCZb.Av,, (25)
where
C,o = —4sin? ;) . [D"(0)+D'(0)].V~'.B (26)
Cyy = 4sin2(%) .D"(@).V~!.B. @7)

Finally consider a horizontal displacement at 4 with B being fixed. The boundary
conditions in this case are

U@0+wo)=0 W) =0
U(0).sin B—W(0).cos =0 U =0 (28)
U(0). cos f+ W(0).sin § = Ah, U'lay+ W(x) = 0.

Similar to the previous cases and from equation (13) we have
Wy(6) = Ah, .D(6). H '.B (29)

where H is given in the Appendix.
The moments at A and B for this case are

El
M, = PC“ .Ah, (30)
EI
Mba3 = _PCE}b'Aha (31)
where
Cau = —4sin2(g) (D"(0)+D/(0)] . H~! . B (32
Csy = 4sin2(§) .D"() . H™'.B. (33)

The moments at both ends of the member due to 8,, Av, and Ah, at B can be obtained in the
same manner.

Having considered the effects due to these displacements acting separately, the general
dynamic slope—deflection equations for moments can now be obtained by combining the
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results due to these effects and they are

E Av, Av, Ah, Ah,

M, = —(Cmg +C b9b+cza C2b +Cs 2 +Ca— ) (4
El Av, Av, Ah, Ah,

M,, = I ( Cip0,+C10,+ C2b —Co— 12 +Cyp— I +Cai— I ) (35

The slope—deflection equations for vertical and horizontal thrusts can be derived in
the following manner.
From equations (6) and (7) the shear and normal forces at any section are

06) = ~ S W"(0)+ W'0)] (6)

N@©) = %[WV(GH W™(0)— 4. - W'(6)]. 37)

The vertical and horizontal thrusts at A and B are
V, = 0(0). sin B— N(0).cos
= —0(0). cos ,B—N(O .sin f8
Vba = Q(a) . sin(a + f) — N(«) . cos(ee + B)
H,, = —Q(x). cos(ax+ B)— N(). sin(x + B).

Substitution of equations (36) and (37) into the above four equations yields

V, = % sin3(;) {—[W™(0)+ W’ (0)] sin B— [W"(0)+ W"(0)— AW'(0)] cos B} (38)
8EI . IV ", V ¢ (4
H, = Fsm {[W 0)+ W'(0)] cos f—[W"(0)+ W”(0)— AW'(0)] sin B} 39)
8EI . o IV 1 . vV, ) (4
Via = 5 sin3 E) {=[W"(a)+ W'(a)] sin(a+ f)— [W" () + W"(a) — AW'()] cos(ex + B)} (40)
H,, = % sin3 %) {[(W" () + W’()] cos(a+ B)— [W¥ () + W"(a) — AW ()] sin(a+ B)}. (41)

The vertical thrust due to a rotation at A can be obtained by substituting equation (16) into
(38). Thus

El
Vapr = FFlaea (42)
in which
F,, = —4sin? JO,8.A"1.B (43)
and
J(0, ) = [D'(0)+D"(6)] sin ¢ + [D¥(0) + D" (0) — AD'(6)] cos ¢ (44)

where ¢ is a dummy vector.
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Similarly, from equations (23), (29) and (38), the thrusts due to vertical and horizontal
displacements at A4 are, respectively,

EI
Viba = Fan .Av, (45)
EI
Vab3 = FFaa . Aha (46)
where
Fp, = —8sin’ g) JO,-V''.B (47)
F,, = -8 sin3(%) .JO,f).H'.B. (48)

The horizontal thrusts due to rotation, vertical and horizontal displacements at A can be
obtained in the same manner. Substitution of equations (16), (23) and (29), respectively,
into equation (39) yields

EI
Habl = FGla . 0a (49)
El
Hab2 = FGZa . Ava (50)
EI
Hab3 = i-363u'Aha (51)
in which
G, = 4sin2(% KO,p).A"'.B (52)
G,, = 85in3(g KO,).V~'.B (53)
G, = 8 sin % K(0,f).H '.B (54)
and
K(6, ¢) = [D'(6)+D"(6)] cos ¢ — [D*(6) +D"(6) — AD'(9)] sin ¢. (55)

Following the same procedure as before, the vertical and horizontal thrusts at B due to
#,, Av, and Ah, are

EI

Voar = 73F10- Oa (56)
El

Voaz = T3P0 B0, (57)
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EI
Voas = FF3b'Aha (58)

EI
Hbal - PGIb . ea (59)

El
Hyuz = 735G - A0, (60)

El
Hba3 - FG3b'Aha (61)

where

F, = —4 sinz(g Jo,a+p8). A7 B (62)
Fy = -8 sin3(% Ja,a+p). VLB (63)
F,, = —8sin? % Jo,a+p).H . B (64)
G,, = 4sin? % K, a+8).A"1.B (65)
G,, = 8sin3(; K@a+ph).V'1.B (66)
Gs, = 8sin3(f'2E K@ a+f).H '.B. (67)

The thrusts at both ends due to 6,, Av, and Ah, can be obtained again in the same way.
Superimposing the effects due to the displacements at both ends of the member we
obtain the following slope—deflection equations for thrusts:

EI Av, Av, Ah, Ah,

Vap = LZ(FMG + Fypby+ Fop— L —Fyp— 7 +F3,—— 2 +F3,— 2 ) (68)
EI Av, Av, Ah, Ah,

Vea = (Fu;6 + Fia0p+ Fpp— L —F— 2 Lt Fyp—2 I’ +F3, I ) (69)
EI Av Av, Ah, Ah,

Ha (Glag -G b0b+G2a +GZb G3a G3b L ) (70)
EI Av Av, Ah, Ah,

H,, = F(Guﬁ Gla0b+GZb “+ Gy L +G3p—— I -Gy I ) (71)

The general dynamic slope—deflection equations for moments and thrusts have been
derived and they are given in equations (34), (35) and (68)—(71). The coefficients appearing
in these equations are functions of « and 4, and can be computed with the aid of a digital
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computer for different values of «; and C, a frequency constant for curved member, is

given by
EI
=C [|—5 72
where
C = 4sinz(%) JA (73)
4. EXAMPLE

A symmetrical circular curved frame of constant cross-section undergoing horizontal
vibrations as shown in Fig. 3 is analyzed for natural frequencies. The conditions of dynamic
equilibrium at joint B give

Mba+Mbc+Mbd =0 (74)
_Hba+Hbc+Hbd = 0. (75)
6,

F1G. 3. Frame undergoing horizontal vibrations.

The dynamic slope—deflection equations for BA and BC can be written as

M, = EL{(CNO,,+C3,,%) (76)
M, = E—Z(C1a0b+C3aéL}1) 77
H, = g( —GlaH,,—G“ATh) (78)
H;, %(Gla(),ﬂ-Ggm%h). (79)
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For column BD where the effect of normal forces is small and can be neglected, the moment
and shear take the forms [9]

2E] 2Ah
4E] 2Ah
Hy; = —F[E(Z)Gb—ﬁ(i)—z—] (81)
where
- ~cosh A sin 2—sinh X cos A
ah =1 1—cosh  cos 4 (82)
o+ 7, sinhisini
HA) = 4 1 —coshAcosA ®3)
_ . -38inh Acos A+cosh Asin 4
md) = 1 1—cosh Acos i (84)
and

4 2
515

The relation between A and 4 is given by
I
l= sm(i) YA {(86)

Substituting equations (76)—(81) in equations (74) and (75) leads to the following frequency
equation:

Cia+eld) C3,—28A) _

Ga—200)  Gya+4m(i)| ®7)

Equation (87), in fact, has only one unknown A which can be solved by the method of
false position on the IBM 360 computer. The results of C vs. « for the first five modes
with « varying from 20 to 180° are shown in Fig. 4.

5. CONCLUSIONS

The dynamic slope-deflection equations for circular curved members of constant
cross section have been presented in this paper for the determination of the natural fre-
quencies of frame structures. The application of the derived equations has been illustrated
in the example of a two-span curved frame undergoing natural horizontal vibrations.
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The results given in Fig. 4 show that the natural frequency of the curved frame decreases
as the central angle of the arc increases. This effect becomes significant for higher modes.
The proposed method can also be extended to the analysis of curved frames subjected to
forced vibrations.
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FiG. 4. Variation of C with a.
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APPENDIX
Case 1
D(0) = [cos 5,0 cosa,0 cosoyf sino,0 sino,0 sing;0]
1 1 1 0 0 0
0 0 0 o, 0, 0,
A=|_g2 _g2 —62 0 0 0
R
1-6? 1-0% 1-03 0 0 0
sin f§ sin f§ sinf o,cosf o,cosf oycosf
V= —cosff —cosf —cosf oysinf a,sinf o;sinf
R
1-06? 1-06% 1-03 0 0 0
cosfp cosfp cosf —o,sinf —a,sinff —o,sinf
H = sinf sinf sinf o,cosf a,cosf  gicosf
R
where
Cos G, COS 0,0 COS 030 sin oo sin o,a sin o;a
R=|—-0sinc,0 —0,8in0,0 —038iN030 0,C086,00 G,COS80,0  G3COS T30

—o2coso,0 —oicoso,m —oicosoix —olsing,x —o3sino,x —o3sinosa

Case 2

D(#) = [cos 6,0 cos uf cosh vl cos ufsinh vl sing,0 sin ufsinh vf sin uf cosh v]

1 1 0 0 0 O
0 0 v g 0 pu
A= 2 2 2
—o7 vi—pu* 0 0 2w O
S
l—0? 14+vi—p? 0 0 2uv 0
sin f sin f§ vcosff o,cosf O ucosp
V= —cosff —cosf vsinf o,;sinf O usinf



804 TuNG-MING WANG and JIUNN-MING LEE

1—0? 14v2—p? 0 0 2uy 0
cos f cos 8 —vsinf —og;sinf 0O —pusinf
| sinp sin f§ veosff o ,cosf 0 ucosf
S
where
CoS cos ua cosh vo cos uo sinh va
—0,8inoa — u sin pa cosh va — i sin o sinh vo
S = + v cos po sinh v + v cos po cosh v
2 2,2 h 2,2 inh
gycosaa  (v-—pu“)cos uxcosh v (v°— u*)cos pa sinh va
—2uv sin pe sinh va —2uv sin pox cosh va
sin g, sin pa sinh vo sin o cosh va
0, COS 0% {1 cos po sinh va i cos po cosh va
+ v sin pa cosh va + v sin pa sinh va
2 o 2 2\ o inh 2 2y h
—ofsing,a (v —p®)sin pa sinh va  (v¥ — p”) sin pa cosh va
+2uvcos pxcoshvae  +2uv cos pa sinh va
Case 3

D(0) = [cosg,0 cosho,0 cosho;0 sing,0 sinho,0 sinhag;0]

T
1-62 1+0¢3 1+03 0 0 0
sin f§ sin f§ sinff  o,cosf o6,cosf o3cosf
V= —cosf —cosf —cosfB g;sinff o,sinf o;sinf
T
1—6? 1402 14063 0 0 0
cosf cosf cosf —oysinffi —o,sinff —o3sinf
H=

sinf sinf sinf o,cosf o,cosff  oycosf
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where
cos o0 cosh g, cosh g0 sin oo sinh o, sinh o0
T=]|—-0g,sinc,a o,sinho,a o3sinhoyx  oycosoa  o,cosho,x 03coshosa
—o2coso,a o3cosho, olcoshosa —ofsino,x oisinho,a o3 sinhosa

(Received 16 August 1971 ; revised 15 November 1971)

AbcTpakT—/ns onpeaenvs coOCTBEHHBIX YACTOT PAMHBIX KIOHCTPYKLMIA BbIBOAATCA OOLUNE THHAMHUYECKUE
ypaBHEHUs yrioBbIXx AebopMaumii, IS KPYIJbIX YI€HOB MOCTOAHHOIO cedyeHus. B kauecTBe mpuMmepa,
Ha€Tca OBYXMPONETHAA 3aKPHBJIEHHAs pama A/ WUIOCTPALMM BbIBEEHHBIX YPOBHEHUM M ANS YKa3aHUA
BauaHns 3ddekTa LEHTPANTLHOTO Yra apKu HA COGCTBEHHbBIE YaCTOThI PaMbl.



