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NATURAL FREQUENCIES OF
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Abstract-The general dynamic slope·-deflection equations for circular curved members of constant section have
been derived for the determination of natural frequencies of frame structures. An example of a two-span curved
frame is given to illustrate the application of the derived equations and to show the effect of the central angle of
the arc upon the natural frequencies of the frame.

1. INTRODUCTION

VIBRATIONS of curved beams have been studied by many investigators. Den Hartog [1]
applied the Rayleigh-Ritz method to find the lowest natural frequency of circular arcs
vibrating in the plane of initial curvature of the arc. Volterra and Morell [2] extended
Den Hartog's work to include arcs having center lines in the form of cycloids, catenaries
or parabolas. The first detailed paper concerning the vibration of ring segments was pub
lished by Waltking [3J who obtained the exact solution for the free vibration of a pinned
pinned circular arc. Morley [4J solved the problem of flexural vibrations of a cut thin ring
exactly and presented the first ten modes of symmetrical and anti-symmetrical vibrations.
The inextensional vibrations of an incomplete circular ring with additional terms to repre
sent damping effects were studied by Archer [5]. Using the Rayleigh-Ritz technique in con
junction with Lagrangian multipliers, Nelson [6] made an analytical study of the in-plane
vibration of a simply supported circular ring segment. He obtained frequency equations
in the form ofinfinite series for inextensional and extensional in both symmetrical and anti
symmetrical mode shapes.

All these works mentioned above are simple curved beams with various boundary
conditions. No investigations, however, have been made for curved frames. The purpose
of this paper is, therefore, to present a general method for analyzing circular curved frames,
single or continuous. Similar to those in the statical case [7], the general dynamic slope
deflection equations for circular curved members in terms of rotation, vertical and hori
zontal displacements, have been derived. The use of the derived equations is then illustrated
by the determination of natural frequencies of a circular curved frame.
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(2)

2. BASIC DIFFERENTIAL EQUATION AND ITS SOLUTION

Consider the in-plane, small vibration of a circular curved element as shown in Fig. 1.
The equations of motions in radial and tangential directions and the moment equation are

aQ a2u
ae +N = mr at2 (1)

aN a2 w
7ifj-Q = mr at 2

aM
--+Qr = 0ae

FIG. 1. Element of member subjected to forces and moments.

(3)

where Q is the shear force, N the normal force, M the bending moment, m the mass per
unit length of member, r the radius of circular are, e the angular coordinate, u the inward
radial displacement, w the tangential displacement in the sense of increasing eand t the
time. For inextensional vibration, the displacements must satisfy the condition

aw
u = ae' (4)

The relation between the moment and the change in curvature [8J takes the form of

M = - EI(iJ2U +u) (5)
r2 ae2

where E is the modulus ofelasticity, I the moment of inertia of cross section and M, r, u and
() as defined previously.



Natural frequencies of multi-span circular curved frames 793

(6)

From equations (1) and (3H5) we obtain

EI(04W OZw)
Q = -~ oe4+ oez

03W EI(OSW 03W)
N = mrotZoe+~ oes + oe3 . (7)

Substituting equations (6) and (7) in equation (2) yields a sixth-order differential equation
in w as follows:

EI(06W 04W OZw) (OZW 04W )
?" oe6 +2oe4 + oez = m otZ - otZoez . (8)

Assuming that the curved member is excited harmonically with a frequency p and letting

W(e, t) = W(e). eipt (9)

where W(e) is the tangential modal function and i = -J( -1), substituting equation (9) in
(8) and omitting the common term eipt

, the following equation is obtained:

where

WV1 +2WIV +(1-A)W" +AW = 0 (10)

(11)

and the primes for W represent differentiation with respect to e.
Equation (10) is a linear differential equation with constant coefficients so the standard

form of solution for W(e) is

6

W(e) = L an eYn8

n;l
(12)

where Yn are the roots of the auxiliary equation. The roots are of three types depending
upon the value of A.

Case 1: 0 < A < 0·113407
The roots are of the form

Case 2: 0·113407 < A < 17·6366
The six roots are

Case 3: 17·6366 < A < 00

The roots in this case are

Y3,4 = ±(v+ jli), YS,6 = ±(v-jli).
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The modal functions for the three cases can be written as

W(8) = D(8)X

where D(8), a row matrix, is given in the Appendix for the three cases and

a I

a2

X=
a3

a4

as

a6

3. GENERAL DYNAMIC SLOPE-DEFLECTION EQUATIONS FOR
CIRCULAR CURVED MEMBER OF CONSTANT SECTION

(13)

Figure 2 shows a circular curved member of constant cross section subjected to har
monic displacements, linear and rotational, at the two ends A and B.

Consider first the rotation at A with B being fixed. The boundary conditions due to
8a acting only are

W(O) = 0

U(O) = 0

U'(O)+ W(O) = r8a

W(ex) = 0

U(ex) = 0

U'(ex) + W(ex) = O.

(14)

L

r

FIG. 2. Positive displacements, forces and moments with common factor e'P' omitted.
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The substitution of equation (13) into equations (14) will yield the solution of the unknown
coefficients in the following matrix form:

X = rBaA -IB (15)

where A- I is the inverse of matrix A which is a coefficient matrix given in the Appendix and

o
o

B=
o
o
o

Substituting equation (15) in (13) yields

WI (B) = r. Ba . O(B) . A- I . B. (16)

(17)

Using equations (4), (5), (14) and (16) the moments at A and B can be obtained as follows:

EI
Mabl = LClaBa

(18)

(19)

(20)

(21)

where

CIa = - 2 sin(~) .0"'(0). A-I. B

C Ib = 2 sin(~) . O"'(rx) . A- I . B

L= 2r sin(~).

Consider next a vertical displacement AVa at A while B is still fixed. The boundary
conditions are

U'(O) + W(O) = 0

U(O) . cos {3 + W(O) . sin {3 = 0

U(O) . sin {3 - W(O) . cos {3 = AVa

W(rx) = 0

U(rx) = 0

U'(rx) + W(rx) = O.

(22)

Using the relations of equations (22), equation (13) gives the following tangential dis
placement

(23)

where V is a coefficient matrix which is shown in the Appendix, and D(B) and B as defined
previously.
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The moments at both ends can be obtained by using equations (4), (5), (22) and (23). The
results are

(24)

(25)

(26)

(27)

where

C 2a = -4sin2(~). [D"'(O)+D'(O)]. V- 1 . B

C 2b = 4 sin2(~) . D"'(IX). V- 1
. B.

Finally consider a horizontal displacement at A with B being fixed. The boundary
conditions in this case are

U'(O) + W(O) = 0

U(O) . sin f3 - W(O) . cos f3 = 0

U(O) . cos f3 + W(O) . sin f3 = llha

W(IX) = 0

U(IX) = 0

U'(IX) + W(IX) = O.

(28)

Similar to the previous cases and from equation (13) we have

where H is given in the Appendix.
The moments at A and B for this case are

where

C 3a = -4sin2(~) . [D"'(O)+D'(O)].H-1.B

(29)

(30)

(31)

(32)

(33)

The moments at both ends ofthe member due to (h, llvb and llhbat B can be obtained in the
same manner.

Having considered the effects due to these displacements acting separately, the general
dynamic slope-deflection equations for moments can now be obtained by combining the
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(35)

(34)

results due to these effects and they are

E1( Llva Llvb Llha Llhb )
M ab = L Cla8a+Clb8b+C2aL-C2bL+C3aL+C3bL

E1 ( Llva Llvb Llha Llhb )
Mba = L Clb8a+Cla8b+C2bL-C2aL+C3bT+C3aT .

The slope-deflection equations for vertical and horizontal thrusts can be derived in
the following manner.

From equations (6) and (7) the shear and normal forces at any section are

N(8) = E: [WV(8) + W"'(8)-A' W'(8)].
r

The vertical and horizontal thrusts at A and Bare

(36)

(37)

v..b = Q(O). sin p- N(O) . cos p
Hab = -Q(O). cos P-N(O). sin p
v"a = Q(IX). sin(1X + p) - N(IX) . COS(IX + P)

Hba = - Q(IX). COS(IX + P)- N(IX). sin(1X + P).

Substitution of equations (36) and (37) into the above four equations yields

v..b = ~1 sin3(~) {- [WIV(O) + W'(O)J sin p- [WV(O) + W"'(O) - AW'(O)J cos P} (38)

Hab = 8:31 sin3(~) ([WIV(O) + W"(O)J cos P- [WV(O) + W"'(O) - AW'(O)J sin P} (39)

v"a = 8:: sin3(~){- [W1V(IX) + W"(IX)J sin(lX+ P)- [WV(IX) + W"'(IX)-AW'(IX)J COS(IX + P)} (40)

Hba = 8:: sin3(~){[WIV(IX)+ W"(IX)J COS(IX+P)-[WV(IX)+ W"'(IX)-AW'(IX)J sin(lX+p)}. (41)

The vertical thrust due to a rotation at A can be obtained by substituting equation (16) into
(38). Thus

(42)

in which

and
J(8, ¢) = [D1V(8) + D"(8)J sin ¢ + [DV(8) + D"'(8)- AD'(8)J cos ¢

where ¢ is a dummy vector.

(43)

(44)
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Similarly, from equations (23), (29) and (38), the thrusts due to vertical and horizontal
displacements at A are, respectively,

where

F2a = -8sin3(~).J(0,j3)'V-I.B

. 3(rx) (0 -IF3a = -8sm 2 .J ,j3).H .B.

(45)

(46)

(47)

(48)

The horizontal thrusts due to rotation, vertical and horizontal displacements at A can be
obtained in the same manner. Substitution of equations (16), (23) and (29), respectively,
into equation (39) yields

in which

and

Gla = 4sin2(~) .K(O,j3).A- I .B

G2a = 8 sin3(~) . K(O, 13). V-I. B

G3a = 8sin3(~) .K(O,j3).H- I .B

(49)

(50)

(51)

(52)

(53)

(54)

K(8, ¢) = [D1Y(8)+D"(8)] cos ¢-[DY (8)+D"'(8)-..1.D'(8)] sin ¢. (55)

Following the same procedure as before, the vertical and horizontal thrusts at B due to
8a, ~va and ~ha are

(56)

(57)
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Fib = -4sin2(~) .J(IX,IX+P).A-l.B

F2b = -8 sin3(~) . J(IX, IX+ 13). V-i. B

F3b = - 8 sin3(~) . J(IX, IX + 13) .H - 1 . B

G1b = 4 sin2(~) . K(IX, IX + fJ) . A - 1 . B

G2b = 8 sin3(~) . K(IX, IX + 13) .V-i. B

G3b = 8sin3(~) .K(IX,IX+fJ).H-l.B.

799

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

The thrusts at both ends due to eb , L\vb and L\hb can be obtained again in the same way.
Superimposing the effects due to the displacements at both ends of the member we

obtain the following slope-deflection equations for thrusts:

(68)

(69)

(70)

(71)

The general dynamic slope-deflection equations for moments and thrusts have been
derived and they are given in equations (34), (35) and (68)-(71). The coefficients appearing
in these equations are functions of IX and A, and can be computed with the aid of a digital
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computer for different values of IX; and C, a frequency constant for curved member, is
given by

(72)

where

(73)

4. EXAMPLE

A symmetrical circular curved frame of constant cross-section undergoing horizontal
vibrations as shown in Fig. 3 is analyzed for natural frequencies. The conditions ofdynamic
equilibrium at joint B give

A

Mba+Mbc+Mbd = 0

- Hba + Hbc + Hbd = O.

r

C
I

L
2

(74)

(75)

L L

FIG. 3. Frame undergoing horizontal vibrations.

(76)

(77)

(78)

(79)
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For column BD where the effect of normal forces is small and can be neglected, the moment
and shear take the forms [9]

where

_ '1") _ 'lcosh Xsin X- sinh Xcos 1
C(A - A--"----=---=--

1 cosh Acos A

1(1) = 12 sinh A sin A
I-cosh;: cos X

m(X) = 13 sinh Xcos 1+cosh Xsin ;:
I-cosh 1 cos X

and

The relation between 1 and A is given by

- . (et) 4/A= sm "2 . VA.

(80)

(81)

(82)

(83)

(84)

(85)

(86)

Substituting equations (76)-(81) in equations (74) and (75) leads to the following frequency
equation:

I
Cla+c(1)

G1a -21(X)

C 3a -21(1) I-0
G

3a
+4m(1) - .

(87)

Equation (87), in fact, has only one unknown A which can be solved by the method of
false position on the IBM 360 computer. The results of C vs. et for the first five modes
with et varying from 20 to 1800 are shown in Fig. 4.

5. CONCLUSIONS

The dynamic slope-deflection equations for circular curved members of constant
cross section have been presented in this paper for the determination of the natural fre
quencies of frame structures. The application of the derived equations has been illustrated
in the example of a two-span curved frame undergoing natural horizontal vibrations.
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The results given in Fig. 4 show that the natural frequency of the curved frame decreases
as the central angle of the arc increases. This effect becomes significant for higher modes.
The proposed method can also be extended to the analysis of curved frames subjected to
forced vibrations.

200 ~--,----,--~---,--"""'--r--.,.------,

5TH MODE
I 60 ~-~------j----""'c--f-----I-----I--

I 20 f----j---f-----j--

c

40 f-----f-....

1ST MODE

18014010060

OL-_L----J_---l_--l._--l._~_ ___L_ __l

20

0<

FIG. 4. Variation of C with 0(.
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where
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APPENDIX

D(8) = [cos a18 cos a28 cos a38 sin a18 sin a28 sin a38]

1 0 0 0

0 0 0 al a2 a3
A=

-aI -a~ -a~ 0 0 0
--------------------

R

1-aI 1-a~ 1-a~ 0 0 0

sin f3 sin f3 sin f3 a1cos f3 a2 cos f3 a3 cos f3
v= -cos f3 -cos f3 -cos f3 a1sin f3 a2 sin f3 a3 sin f3

----------------------------------

R

1-aI 1- a~ 1-a~ 0 0 0

cos f3 cos f3 cos f3 - a1sin f3 - a2 sin f3 - a3 sin f3
H=

sin f3 sin f3 sin f3 a1cos f3 a2 cos f3 a3 cos f3

R

803

l
cos a 1(l

R = - a; sin a 1et

- a 1 cos a 1et

cos a2(l cos a3et

- a2 sin a2 et - a3 sin a3(l

- a~ cos a2et - a~ cos a3(l

sm a1et sin a2et

sin "'"Ja1cos a1et a2 cos a2et a3 cos a3et
2 . 2 . 2 .

- a1sm a1et -a2 sm a2et -a3sma3et

Case 2

D(8) = [cos a 18 cos Jl.8 cosh v8 cos Jl.8 sinh v8 sin a18 sin Jl.8 sinh v8 sin Jl.8 cosh v8]

A=
o
a 2

- 1

o 0

o v

o

s

o 0

o Jl.

2Jl.v 0

v=

1-aI 1+ v2_Jl.2 0 0 2Jl.v 0

sin f3 sin f3 v cos f3 a 1 cos f3 0 Jl. cos f3

-cos f3 -cos f3 v sin f3 a 1 sin f3 0 Jl. sin f3
---------------------------------

s
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l-O"i 1+V2 -fl2 0 0 2flV 0

cos f3 cos f3 - v sin f3 -0"1 sin f3 0 - fl sin f3
H=

sin f3 sin f3 v cos f3 0" 1 cos f3 0 fl cos f3

s
where

s=

cos WI. cosh VCX

- fl sin flCX cosh vcx
+ v cos flCX sinh vcx

cos flCX sinh vcx

- fl sin flCX sinh vcx
+ v cos flCX cosh vcx

- O"i cos 0" 1CX (v2 - fl2) cos flCX cosh vcx (v2 - fl2) cos flCX sinh vcx
- 2flV sin flCX sinh vcx - 2flV sin flCX cosh vcx

Case 3

sin flCX sinh vcx

fl cos flCX sinh vcx
+ v sin flCX cosh VCX

(v2 - fl2) sin flCX sinh vcx
+ 2flV cos flCX cosh vcx

sin flCX cosh vcx

fl cos flCX cosh vcx
+ v sin flCX sinh vcx

(v2 - fl2) sin flCX cosh vcx
+ 2flV cos flCX sinh vcx

0 0 0

0 0 0 0"1 0"2 0"3

A=
-O"i O"~ O"~ 0 0 0
-----------------

T

l-O"i 1+O"~ 1+O"~ 0 0 0

sin f3 sin f3 sin f3 0"1 cos f3 0"2 cos f3 0"3 cos f3
v= -cos f3 -cos f3 -cos f3 0"1 sin f3 0"2 sin f3 0"3 sin f3

T

l-O"i 1+O"~ 1+O"~ 0 0 0

cos f3 cos f3 cos f3 -0"1 sin f3 -0"2 sin f3 -0"3 sin f3
H=

sin f3 sin f3 sin f3 0" 1 cos f3 0"2 cos f3 0"3 cos f3
-----------------------------------

T
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wherelcosa."
cosh 0"2(X cosh 0"3(X sin 0" 1(X sinh 0"2(X s;nh '," ]

T - 0"; sm 0" 1(X 0"2 sinh 0" 2(X 0" 3 sinh 0" 3(X 0"1 cos 0"1(X 0"2 cosh 0"2(X 0"3 cosh 0" 3(X

O"~ cosh 0"2(X O"~ cosh 0" 3(X
2 •

O"~ sinh 0"2 (X O"~ sinh 0" 3(X- 0" 1 cos 0" 1(X - 0" 1 sm 0" 1(X
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